PCNA

 

Trimeric  protein with ring shaped structure; ring encloses DNA preventing dissociation. Acts as a  sliding clamp for polymerases delta and epsilon, thereby improving processivity of replicative polymerases.  Also involved in DNA repair (1) . Loaded onto DNA by RFC

 

Synonyms

 

Molecular weight

• 30ish as trimer (2)

Biochemical properties

 

Motifs

 

Interactions

•review pip box proteins (3)

•RFC ( loads pcna onto chromatin)(4) (5) .

 

Sc

•Pol delta (6)

•Rrm3 helicase (7)

•Eco1 /Ctf7 (8)

•Mcm10 (9)

 

Sp

• Cdc24 (10) (11)

•Sumo (10)

 

Xl

•Xic –degradation of xic needs PCNA binding (12)

• Cdt1 (13) (14)

• lamin C (15)

 

Dm

•Cdt2? (16)

• dacapao and pogo (17)

 

Mammals

•Cdt1  (18)

•RFC (19) (20)

•Pol delta (21) - 125kDa su (6) site GX4GX8GX3YFY (22) . Some suggestion also for 50ka eg (23) (24) also p12 (25)

•Pol epsilon associates late s but not early (26) , associates p50 subunit (27)

•p21 ( inhibits ) (28) (29) (30) (plus many more)

•Cyclin E/CDK2 (31)

•Cyclin D (32)

•Fen1 (33) Fen (34) 2 modes of binding on and off chromatin (35) . Disruption of interaction lethal in mice (36)

•CDK2 (37)

•Caf (38) (39) loads caf onto chromatin (40)

•Mismatch repair proteins (41) (2 hyb)

• Mcl1  (antiapoptotic) (42)

• DNA methyltransferase (43)

• Hmut a and b (44) qxxlixxff

•p15 cif (45)

• Ing ( tumour suppressor)

• Hdac (46)

• Cdc25 (47)

• Mut1 (48)

• Pms/mlh1 (49)

• Xpg (50)

• Ku 70/80 (51)

• Srs1 with sumo form (52) (53)

• Translesion polymerases (54) (55) (56) (57) -involved in loading these onto DNA in the case of damage – only interact with ub forms but seems to be some distinction between mono and di (multi) ub  error prone  and error free respectively (58) , may also be some ub independent effects (59) . ub stimulated by p53 and p21 (60) .Rev via brct domain (61)

• P300 (62)

• DNA ligase 1  (63) (64) needed for dephosphorylation of ligase (65)

•Wrn (66) DQwKLlrdFdVk

•Gadd45 (67)

•Recq5 (68)

•Hdac hus and rad9 have pcna binding site (69)

• Cdc18 (70)

• claspin (71)

•rad18 (72)

 

archae

• screen (73)

 

Coprinus cinereus

• lim15/dms (recA homologue) (74)

 

Modifications

Sc

•Sumolyated during S phase (75) : sumoylation stops recombination in S via Srs2 recruitment (76)

•Ubiquitylated during DNA damage (52)

-Multiub (mms, ubc13, rad5) (75) (2)

-Mono Ub by ubc9/rad18 (77)

-de ub by usp1 (78)

 

Sp

•Ubiquitylated after  DNA damage and during S phase (79)

 

Xenopus

Ubiquitylated – mono with UV and low aphidicolin. Di – on high aphidicolin ( mediated via ssDNA (80)

 

Mammal

•Ubiquitylated after  DNA damage (81) (54)

Phosphorylation (increases on uv treatment - (82) , increases on s entry (82)

• tyr 211 phosphorylation needed for stability (83)

Structure

•Structure similarity to coli dnaB. Forms  ring round DNA.

 

Sc

• co-crystal ligase (cdc9) (84)

 

Mammals

• crystal structure with FEN  (85)

•em structures (86) (87)

 

Archae

•X ray structure (88) of complex with fen (89)

Cellular location and expression

Dm

(90)

 

Mammals

•Pcna exchanges very slowly in mammalian cells after photobleaching (91) (92) but different at repair and replication sites (93)

 

Starfish

•Into the nucleus on s and out again at the end (94)

 

Other comments

 •2nd enzyme in some species eg carrot /mouse (although mouse may be pseudogene)

 

Sp

•9.1.1.sugested to form a similar structure to pcna ie sliding clamp (95)

 

Xl

•In extracts pola needed for loading pcna (96)

 

Dm

•DREF site  (97)

 

Mammals

•e2f site (98)

• in cancer cells PCNA levels are 5-6 x up. Isoforms and modifications unchanged (99)

 

Revised by

 

Last edited

14 July 09

 

 

1.    Mozzherin,D.J., Tan,C.K., Downey,K.M. and Fisher,P.A. (1999) Architecture of the active DNA polymerase delta.proliferating cell nuclear antigen.template-primer complex. J Biol Chem 274, 19862-19867.

2.    Krishna,T.S., Kong,X.P., Gary,S., Burgers,P.M. and Kuriyan,J. (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233-1243.

3.    Moldovan,G.L., Pfander,B. and Jentsch,S. (2007) PCNA, the maestro of the replication fork. Cell 129, 665-679.

4.    O'Donnell,M., Onrust,R., Dean,F.B., Chen,M. and Hurwitz,J. (1993) Homology in accessory proteins of replicative polymerases--E. coli to humans. Nucleic Acids Res 21, 1-3.

5.    Gerik,K.J., Gary,S.L. and Burgers,P.M. (1997) Overproduction and affinity purification of Saccharomyces cerevisiae replication factor C. J Biol Chem 272, 1256-1262.

6.    Brown,W.C. and Campbell,J.L. (1993) Interaction of proliferating cell nuclear antigen with yeast DNA polymerase delta. J Biol Chem 268, 21706-21710.

7.    Schmidt,K.H., Derry,K.L. and Kolodner,R.D. (2002) Saccharomyces cerevisiae RRM3, a 5' to 3' DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem 277, 45331-45337.

8.    Moldovan,G.L., Pfander,B. and Jentsch,S. (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23, 723-732.

9.    Das-Bradoo,S., Ricke,R.M. and Bielinsky,A.K. (2006) Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol Cell Biol 26, 4806-4817.

10.  Tanaka,H., Tanaka,K., Murakami,H. and Okayama,H. (1999) Fission yeast cdc24 is a replication factor C- and proliferating cell nuclear antigen-interacting factor essential for S-phase completion. Mol Cell Biol 19, 1038-1048.

11.  Kawasaki,Y., Hiraga,S. and Sugino,A. (2000) Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae. Genes Cells 5, 975-989.

12.  Chuang,L.C. and Yew,P.R. (2005) Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. J Biol Chem 280, 35299-35309.

13.  Arias,E.E. and Walter,J.C. (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 8, 84-90.

14.  Arias,E.E. and Walter,J.C. (2005) Replication-dependent destruction of Cdt1 limits DNA replication to a single round per cell cycle in Xenopus egg extracts. Genes Dev 19, 114-126.

15.  Shumaker,D.K., Solimando,L., Sengupta,K., Shimi,T., Adam,S.A., Grunwald,A., Strelkov,S.V., Aebi,U., Cardoso,M.C. and Goldman,R.D. (2008) The highly conserved nuclear lamin Ig-fold binds to PCNA: its role in DNA replication. J Cell Biol181, 269-280.

16.  Higa,L.A., Banks,D., Wu,M., Kobayashi,R., Sun,H. and Zhang,H. (2006) L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle 5, 1675-1680.

17.  Warbrick,E., Heatherington,W., Lane,D.P. and Glover,D.M. (1998) PCNA binding proteins in Drosophila melanogaster : the analysis of a conserved PCNA binding domain. Nucleic Acids Res 26, 3925-3932.

18.  Senga,T., Sivaprasad,U., Zhu,W., Park,J.H., Arias,E.E., Walter,J.C. and Dutta,A. (2006) PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. J Biol Chem 281, 6246-6252.

19.  Fotedar,R., Mossi,R., Fitzgerald,P., Rousselle,T., Maga,G., Brickner,H., Messier,H., Kasibhatla,S., Hubscher,U. and Fotedar,A. (1996) A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells. EMBO J 15, 4423-4433.

20.  Uhlmann,F., Cai,J., Gibbs,E., O'Donnell,M. and Hurwitz,J. (1997) Deletion analysis of the large subunit p140 in human replication factor C reveals regions required for complex formation and replication activities. J Biol Chem 272, 10058-10064.

21.  Fukuda,K., Morioka,H., Imajou,S., Ikeda,S., Ohtsuka,E. and Tsurimoto,T. (1995) Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen. J Biol Chem 270, 22527-22534.

22.  Zhang,S.J., Zeng,X.R., Zhang,P., Toomey,N.L., Chuang,R.Y., Chang,L.S. and Lee,M.Y. (1995) A conserved region in the amino terminus of DNA polymerase delta is involved in proliferating cell nuclear antigen binding. J Biol Chem 270, 7988-7992.

23.  Chiang,C.S., Mitsis,P.G. and Lehman,I.R. (1993) DNA polymerase delta from embryos of Drosophila melanogaster. Proc Natl Acad Sci U S A 90, 9105-9109.

24.  Zhou,J.Q., He,H., Tan,C.K., Downey,K.M. and So,A.G. (1997) The small subunit is required for functional interaction of DNA polymerase delta with the proliferating cell nuclear antigen. Nucleic Acids Res 25, 1094-1099.

25.  Li,H., Xie,B., Zhou,Y., Rahmeh,A., Trusa,S., Zhang,S., Gao,Y., Lee,E.Y. and Lee,M.Y. (2006) Functional roles of p12, the fourth subunit of human DNA polymerase delta. J Biol Chem 281, 14748-14755.

26.  Fuss,J. and Linn,S. (2002) Human DNA polymerase epsilon colocalizes with proliferating cell nuclear antigen and DNA replication late, but not early, in S phase. J Biol Chem 277, 8658-8666.

27.  Lu,X., Tan,C.K., Zhou,J.Q., You,M., Carastro,L.M., Downey,K.M. and So,A.G. (2002) Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase delta. J Biol Chem 277, 24340-24345.

28.  Podust,V.N., Podust,L.M., Goubin,F., Ducommun,B. and Hubscher,U. (1995) Mechanism of inhibition of proliferating cell nuclear antigen-dependent DNA synthesis by the cyclin-dependent kinase inhibitor p21. Biochemistry 34, 8869-8875.

29.  Waga,S., Hannon,G.J., Beach,D. and Stillman,B. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-578.

30.  Li,R., Hannon,G.J., Beach,D. and Stillman,B. (1996) Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr Biol 6, 189-199.

31.  Pines,J. (1994) Cell cycle. p21 inhibits cyclin shock. Nature 369, 520-521.

32.  Matsuoka,S., Yamaguchi,M. and Matsukage,A. (1994) D-type cyclin-binding regions of proliferating cell nuclear antigen. J Biol Chem 269, 11030-11036.

33.  Chen,U., Chen,S., Saha,P. and Dutta,A. (1996) p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc Natl Acad Sci U S A 93, 11597-11602.

34.  Li,X., Li,J., Harrington,J., Lieber,M.R. and Burgers,P.M. (1995) Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem 270, 22109-22112.

35.  Gomes,X.V. and Burgers,P.M. (2000) Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J 19, 3811-3821.

36.  Zheng,L., Dai,H., Qiu,J., Huang,Q. and Shen,B. (2007) Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. Mol Cell Biol 27, 3176-3186.

37.  Koundrioukoff,S., Jonsson,Z.O., Hasan,S., de Jong,R.N., van der Vliet,P.C., Hottiger,M.O. and Hubscher,U. (2000) A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation. J Biol Chem 275, 22882-22887.

38.  Zhang,Z., Shibahara,K. and Stillman,B. (2000) PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221-225.

39.  Ridgway,P. and Almouzni,G. (2000) CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J Cell Sci 113, 2647-2658.

40.  Shibahara,K. and Stillman,B. (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575-585.

41.  Umar,A., Buermeyer,A.B., Simon,J.A., Thomas,D.C., Clark,A.B., Liskay,R.M. and Kunkel,T.A. (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65-73.

42.  Fujise,K., Zhang,D., Liu,J. and Yeh,E.T. (2000) Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J Biol Chem 275, 39458-39465.

43.  Chuang,L.S., Ian,H.I., Koh,T.W., Ng,H.H., Xu,G. and Li,B.F. (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996-2000.

44.  Kleczkowska,H.E., Marra,G., Lettieri,T. and Jiricny,J. (2001) hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 15, 724-736.

45.  Yu,P., Huang,B., Shen,M., Lau,C., Chan,E., Michel,J., Xiong,Y., Payan,D.G. and Luo,Y. (2001) p15(PAF), a novel PCNA associated factor with increased expression in tumor tissues. Oncogene 20, 484-489.

46.  Milutinovic,S., Zhuang,Q. and Szyf,M. (2002) Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 277, 20974-20978.

47.  Kawabe,T., Suganuma,M., Ando,T., Kimura,M., Hori,H. and Okamoto,T. (2002) Cdc25C interacts with PCNA at G2/M transition. Oncogene 21, 1717-1726.

48.  Hidaka,M., Takagi,Y., Takano,T.Y. and Sekiguchi,M. (2005) PCNA-MutSalpha-mediated binding of MutLalpha to replicative DNA with mismatched bases to induce apoptosis in human cells. Nucleic Acids Res 33, 5703-5712.

49.  Lee,S.D. and Alani,E. (2006) Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA. J Mol Biol 355, 175-184.

50.  Gary,R., Ludwig,D.L., Cornelius,H.L., MacInnes,M.A. and Park,M.S. (1997) The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 272, 24522-24529.

51.  Balajee,A.S. and Geard,C.R. (2001) Chromatin-bound PCNA complex formation triggered by DNA damage occurs independent of the ATM gene product in human cells. Nucleic Acids Res 29, 1341-1351.

52.  Papouli,E., Chen,S., Davies,A.A., Huttner,D., Krejci,L., Sung,P. and Ulrich,H.D. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19, 123-133.

53.  Pfander,B., Moldovan,G.L., Sacher,M., Hoege,C. and Jentsch,S. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433.

54.  Bienko,M., Green,C.M., Crosetto,N., Rudolf,F., Zapart,G., Coull,B., Kannouche,P., Wider,G., Peter,M., Lehmann,A.R., Hofmann,K. and Dikic,I. (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821-1824.

55.  Haracska,L., Kondratick,C.M., Unk,I., Prakash,S. and Prakash,L. (2001) Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell8, 407-415.

56.  Friedberg,E.C. (2006) Reversible monoubiquitination of PCNA: A novel slant on regulating translesion DNA synthesis. Mol Cell 22, 150-152.

57.  de Feraudy,S., Limoli,C.L., Giedzinski,E., Karentz,D., Marti,T.M., Feeney,L. and Cleaver,J.E. (2007) Pol eta is required for DNA replication during nucleotide deprivation by hydroxyurea. Oncogene 26, 5713-5721.

58.  Branzei,D., Sollier,J., Liberi,G., Zhao,X., Maeda,D., Seki,M., Enomoto,T., Ohta,K. and Foiani,M. (2006) Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509-522.

59.  Northam,M.R., Garg,P., Baitin,D.M., Burgers,P.M. and Shcherbakova,P.V. (2006) A novel function of DNA polymerase zeta regulated by PCNA. EMBO J 25, 4316-4325.

60.  Avkin,S., Sevilya,Z., Toube,L., Geacintov,N., Chaney,S.G., Oren,M. and Livneh,Z. (2006) p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell 22, 407-413.

61.  Guo,C., Tang,T.S., Bienko,M., Parker,J.L., Bielen,A.B., Sonoda,E., Takeda,S., Ulrich,H.D., Dikic,I. and Friedberg,E.C. (2006) Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 26, 8892-8900.

62.  Hasan,S., Hassa,P.O., Imhof,R. and Hottiger,M.O. (2001) Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410, 387-391.

63.  Mossi,R., Ferrari,E. and Hubscher,U. (1998) DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair. J Biol Chem 273, 14322-14330.

64.  Montecucco,A., Rossi,R., Levin,D.S., Gary,R., Park,M.S., Motycka,T.A., Ciarrocchi,G., Villa,A., Biamonti,G. and Tomkinson,A.E. (1998) DNA ligase I is recruited to sites of DNA replication by an interaction with proliferating cell nuclear antigen: identification of a common targeting mechanism for the assembly of replication factories. EMBO J 17, 3786-3795.

65.  Montecucco,A., Rossi,R., Ferrari,G., Scovassi,A.I., Prosperi,E. and Biamonti,G. (2001) Etoposide induces the dispersal of DNA ligase I from replication factories. Mol Biol Cell 12, 2109-2118.

66.  Lebel,M., Spillare,E.A., Harris,C.C. and Leder,P. (1999) The Werner syndrome gene product co-purifies with the DNA replication complex and interacts with PCNA and topoisomerase I. J Biol Chem 274, 37795-37799.

67.  Smith,M.L., Chen,I.T., Zhan,Q., Bae,I., Chen,C.Y., Gilmer,T.M., Kastan,M.B., O'Connor,P.M. and Fornace,A.J.J. (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266, 1376-1380.

68.  Kanagaraj,R., Saydam,N., Garcia,P.L., Zheng,L. and Janscak,P. (2006) Human RECQ5beta helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res 34, 5217-5231.

69.  Cai,R.L., Yan-Neale,Y., Cueto,M.A., Xu,H. and Cohen,D. (2000) HDAC1, a histone deacetylase, forms a complex with Hus1 and Rad9, two G2/M checkpoint Rad proteins. J Biol Chem 275, 27909-27916.

70.  Saha,P., Chen,J., Thome,K.C., Lawlis,S.J., Hou,Z.H., Hendricks,M., Parvin,J.D. and Dutta,A. (1998) Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol 18, 2758-2767.

71.  Brondello,J.M., Ducommun,B., Fernandez,A. and Lamb,N.J. (2007) Linking PCNA-dependent replication and ATR by human Claspin. Biochem Biophys Res Commun 354, 1028-1033.

72.  Notenboom,V., Hibbert,R.G., van Rossum-Fikkert,S.E., Olsen,J.V., Mann,M. and Sixma,T.K. (2007) Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Res 35, 5819-5830.

73.  Meslet-Cladiere,L., Norais,C., Kuhn,J., Briffotaux,J., Sloostra,J.W., Ferrari,E., Hubscher,U., Flament,D. and Myllykallio,H. (2007) A novel proteomic approach identifies new interaction partners for proliferating cell nuclear antigen. J Mol Biol 372, 1137-1148.

74.  Hamada,F.N., Koshiyama,A., Namekawa,S.H., Ishii,S., Iwabata,K., Sugawara,H., Nara,T.Y., Sakaguchi,K. and Sawado,T. (2007) Proliferating cell nuclear antigen (PCNA) interacts with a meiosis-specific RecA homologues, Lim15/Dmc1, but does not stimulate its strand transfer activity. Biochem Biophys Res Commun 352, 836-842.

75.  Hoege,C., Pfander,B., Moldovan,G.L., Pyrowolakis,G. and Jentsch,S. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141.

76.  Branzei,D. and Foiani,M. (2005) The DNA damage response during DNA replication. Curr Opin Cell Biol 17, 568-575.

77.  Bi,X., Barkley,L.R., Slater,D.M., Tateishi,S., Yamaizumi,M., Ohmori,H. and Vaziri,C. (2006) Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol 26, 3527-3540.

78.  Huang,T.T., Nijman,S.M., Mirchandani,K.D., Galardy,P.J., Cohn,M.A., Haas,W., Gygi,S.P., Ploegh,H.L., Bernards,R. and D'Andrea,A.D. (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8, 339-347.

79.  Frampton,J., Irmisch,A., Green,C.M., Neiss,A., Trickey,M., Ulrich,H.D., Furuya,K., Watts,F.Z., Carr,A.M. and Lehmann,A.R. (2006) Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 17, 2976-2985.

80.  Chang,D.J., Lupardus,P.J. and Cimprich,K.A. (2006) Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J Biol Chem 281, 32081-32088.

81.  Kannouche,P.L., Wing,J. and Lehmann,A.R. (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14, 491-500.

82.  Prosperi,E., Scovassi,A.I., Stivala,L.A. and Bianchi,L. (1994) Proliferating cell nuclear antigen bound to DNA synthesis sites: phosphorylation and association with cyclin D1 and cyclin A. Exp Cell Res 215, 257-262.

83.  Wang,S.C., Nakajima,Y., Yu,Y.L., Xia,W., Chen,C.T., Yang,C.C., McIntush,E.W., Li,L.Y., Hawke,D.H., Kobayashi,R. and Hung,M.C. (2006) Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 8, 1359-1368.

84.  Vijayakumar,S., Chapados,B.R., Schmidt,K.H., Kolodner,R.D., Tainer,J.A. and Tomkinson,A.E. (2007) The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res 35, 1624-1637.

85.  Sakurai,S., Kitano,K., Yamaguchi,H., Hamada,K., Okada,K., Fukuda,K., Uchida,M., Ohtsuka,E., Morioka,H. and Hakoshima,T. (2005) Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J 24, 683-693.

86.  Trakselis,M.A. and Bell,S.D. (2004) Molecular biology: the loader of the rings. Nature 429, 708-709.

87.  Matsumiya,S., Ishino,Y. and Morikawa,K. (2001) Crystal structure of an archaeal DNA sliding clamp: proliferating cell nuclear antigen from Pyrococcus furiosus. Protein Sci 10, 17-23.

88.  Pascal,J.M., Tsodikov,O.V., Hura,G.L., Song,W., Cotner,E.A., Classen,S., Tomkinson,A.E., Tainer,J.A. and Ellenberger,T. (2006) A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol Cell 24, 279-291.

89.  Dore,A.S., Kilkenny,M.L., Jones,S.A., Oliver,A.W., Roe,S.M., Bell,S.D. and Pearl,L.H. (2006) Structure of an archaeal PCNA1-PCNA2-FEN1 complex: elucidating PCNA subunit and client enzyme specificity. Nucleic Acids Res 34, 4515-4526.

90.  Yamaguchi,M., Nishimoto,Y., Hirose,F. and Matsukage,A. (1995) Distribution of PCNA during postblastoderm cell division cycles in the Drosophila melanogaster embryo: effect of a string- mutation. Cell Struct Funct 20, 47-57.

91.  Sporbert,A., Domaing,P., Leonhardt,H. and Cardoso,M.C. (2005) PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins. Nucleic Acids Res 33, 3521-3528.

92.  Solovjeva,L., Svetlova,M., Sasina,L., Tanaka,K., Saijo,M., Nazarov,I., Bradbury,M. and Tomilin,N. (2005) High mobility of flap endonuclease 1 and DNA polymerase eta associated with replication foci in mammalian S-phase nucleus. Mol Biol Cell 16, 2518-2528.

93.  Essers,J., Theil,A.F., Baldeyron,C., van Cappellen,W.A., Houtsmuller,A.B., Kanaar,R. and Vermeulen,W. (2005) Nuclear dynamics of PCNA in DNA replication and repair. Mol Cell Biol 25, 9350-9359.

94.  Nomura,A. (1994) Nuclear distribution of proliferating cell nuclear antigen (PCNA) in fertilized eggs of the starfish Asterina pectinifera. J Cell Sci 107, 3291-3300.

95.  Caspari,T., Dahlen,M., Kanter-Smoler,G., Lindsay,H.D., Hofmann,K., Papadimitriou,K., Sunnerhagen,P. and Carr,A.M. (2000) Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol Cell Biol 20, 1254-1262.

96.  Mimura,S., Masuda,T., Matsui,T. and Takisawa,H. (2000) Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells 5, 439-452.

97.  Yamaguchi,M., Hayashi,Y., Nishimoto,Y., Hirose,F. and Matsukage,A. (1995) A nucleotide sequence essential for the function of DRE, a common promoter element for Drosophila DNa replication-related genes. J Biol Chem 270, 15808-15814.

98.  Matsuoka,S., Yamaguchi,M., Hayashi,Y. and Matsukage,A. (1993) Nucleotide sequence and promoter-specific effect of a negative regulatory region located upstream of the mouse proliferating cell nuclear antigen gene. Eur J Biochem 218, 173-181.

99.  Naryzhny,S.N. and Lee,H. (2007) Characterization of proliferating cell nuclear antigen (PCNA) isoforms in normal and cancer cells: there is no cancer-associated form of PCNA. FEBS Lett 581, 4917-4920.